Rabu, 14 Desember 2016

MAKALAH PENGANTAR TEKNOLOGI SISTEM CERDAS



MAKALAH PENGANTAR TEKNOLOGI SISTEM CERDAS


Disusun Oleh :
Kelompok 3
Naufal Rally Ramadhan               17114862
Noris Bennardo                            18114015
Nursanti Mutiara                          18114241
Nuzul Agung I                             18114297
Rafa Nabila                                  18114729
Reynaldo Aleale                           19114141
Ridha Afni O                               19114281
Rivaldi Pranata S                         19114690
Rizky Hadi                                   19114690


3KA13


Dosen :
Eel Susilowati


UNIVERSITAS GUNADARMA
PTA 2016/2017



ABSTRAK

Makalah ini membahas dan menjelaskan tentang Soft Computing dan Neural Network guna memberi informasi kepada pembaca mengenai Soft Computing dan Neural Network. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.





BAB I

PENDAHULUAN

1.1. Latar Belakang
Cabang ilmu kecerdasan buatan cukup luas, dan erat kaitannya dengan disiplin ilmu yang lainnya. Hal ini bisa dilihat dari berbagai aplikasi yang merupakan hasil kombinasi dari berbagai ilmu. Seperti halnya yang ada pada peralatan medis yang berbentuk aplikasi. Sudah berkembang bahwa aplikasi yang dibuat merupakan hasil perpaduan dari ilmu kecerdasan buatan dan juga ilmu kedokteran atau lebih khusus lagi yaitu ilmu biologi.
Neural Network merupakan kategori ilmu Soft Computing. Neural Network sebenarnya mengadopsi dari kemampuan otak manusia yang mampu memberikan stimulasi/rangsangan, melakukan proses, dan memberikan output. Output diperoleh dari variasi stimulasi dan proses yang terjadi di dalam otak manusia. Kemampuan manusia dalam memproses informasi merupakan hasil kompleksitas proses di dalam otak. Misalnya, yang terjadi pada anak-anak, mereka mampu belajar untuk melakukan pengenalan meskipun mereka tidak mengetahui algoritma apa yang digunakan. Kekuatan komputasi yang luar biasa dari otak manusia ini merupakan sebuah keunggulan di dalam kajian ilmu pengetahuan.

1.2. Rumusan Masalah
1.      Apakah yang dimaksud dengan Soft Computing?
2.      Apakah yang dimaksud dengan Neurall Network?

1.3. Tujuan
Memberi informasi mengenai Soft Computing dan Neurall Network

BAB II
ISI

2.1. Pengertian Soft Computing
Soft Computing  merupakan inovasi baru dalam membangun sistem cerdas yaitu sistem yang memiliki keahlian seperti manusia pada domain tertentu, mampu beradaptasi dan belajar agar dapat bekerja lebih baik jika terjadi perubahan lingkungan. Soft Computing mengeksploitasi adanya toleransi terhadap ketidaktepatan, ketidakpastian, dan kebenaran parsial untuk dapat diselesaikan dan dikendalikan dengan mudah agar sesuai dengan realita (Prof. Lotfi A Zadeh, 1992).

2.2. Metodologi-Metodologi yang Digunakan Soft Computing
1.      Sistem Fuzzy (mengakomodasi ketidaktepatan) : Logika Fuzzy (fuzzy logic)
2.      Jaringan Syaraf (menggunakan pembelajaran) : Jaringan Syaraf Tiruan(neurall network)
3.      Evolutionary Computing (optimasi) : Algoritma Genetika (Genetic Algorithms (GA))

2.3. Jaringan Syaraf Tiruan (Neurall Network)
2.3.1.    Sejarah
Perkembangan ilmu Neural Network sudah ada sejak tahun 1943 ketika Warren McCulloch dan Walter Pitts memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi.
Gambar 2.1 McCulloch & Pitts, penemu pertama Neural Network

Hal ini dilanjutkan pada penelitian yang dikerjakan oleh Rosenblatt pada tahun 1950, dimana dia berhasil menemukan sebuah two-layer network, yang disebut sebagai perceptron. Perceptron memungkinkan untuk pekerjaan klasifikasi pembelajaran tertentu dengan penambahan bobot pada setiap koneksi antar-network.

Gambar 2.2 Perceptron

Keberhasilan perceptron dalam pengklasifikasian pola tertentu ini tidak sepenuhnya sempurna, masih ditemukan juga beberapa keterbatasan didalamnya. Perceptron tidak mampu untuk menyelesaikan permasalahan XOR (exclusive-OR). Penilaian terhadap keterbatasan neural network ini membuat penelitian di bidang ini sempat mati selama kurang lebih 15 tahun. Namun demikian, perceptron berhasil menjadi sebuah dasar untuk penelitian-penelitian selanjutnya di bidang neural network. Pengkajian terhadap neural network mulai berkembang lagi selanjutnya di awal tahun 1980-an. Para peneliti banyak menemukan bidang interest baru pada domain ilmu neural network. Penelitian terakhir diantaranya adalah mesin Boltzmann, jaringan Hopfield, model pembelajaran kompetitif, multilayer network,  dan teori model resonansi adaptif.

Untuk saat ini, Neural Network sudah dapat diterapkan pada beberapa task, diantaranya classification, recognition, approximation, prediction, clusterization, memory simulation dan banyak task-task berbeda yang lainnya, dimana jumlahnya semakin bertambah seiring berjalannya waktu.

2.3.2.    Definisi Neurall Network
Neural Networks (Jaringan Saraf Tiruan) menurut Haykin [4] didefinisikan sebagai berikut :
“Sebuah neural network (JST: Jaringan Saraf Tiruan) adalah prosesor yang terdistribusi paralel, terbuat dari unit-unit yang sederhana, dan memiliki kemampuan untuk menyimpan pengetahuan yang diperoleh secara eksperimental dan siap pakai untuk berbagai tujuan. Neural network ini meniru otak manusia dari sudut : 1) Pengetahuan diperoleh oleh network dari lingkungan, melalui suatu proses pembelajaran. 2) Kekuatan koneksi antar unit yang disebut synaptic weights,berfungsi untuk menyimpan pengetahuan yang telah diperoleh oleh jaringan tersebut.”
Secara sederhana, Jaringan Syaraf Tiruan adalah sebuah alat pemodelan data statistik non-linier. Jaringan Syaraf Tiruan dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data. Menurut suatu teorema yang disebut "teorema penaksiran universal", Jaringan Syaraf Tiruan dengan minimal sebuah lapis tersembunyi dengan fungsi aktivasi non-linear dapat memodelkan seluruh fungsi terukur Boreal apapun dari suatu dimensi ke dimensi lainnya.

2.3.3.    Model Matematika Mc.Culloch dan Pitts
Pada tahun 1943, Mc.Culloch dan Pitts memperkenalkan model matematika yang merupakan penyederhanaan dari struktur sel saraf yang sebenarnya (lihat gambar 1).

Gambar 2 McCulloch & Pitts neuron model

Gambar 2 memperlihatkan bahwa sebuah neuron memiliki tiga komponen:
- synapse (w1 , w2 ,…,wn) T
- alat penambah (adder)
- fungsi aktifasi (f)
Korelasi antara ketiga komponen ini dirumuskan pada persamaan (1).
Signal x berupa vektor berdimensi n (x1 ,x2 ,…,xn)T akan mengalami penguatan oleh synapse w (w1, w2 ,…,wn)T. Selanjutnya akumulasi dari penguatan tersebut akan mengalami transformasi oleh fungsi aktifasi f. Fungsi f ini akan memonitor, bila akumulasi penguatan signal itu telah melebihi batas tertentu, maka sel neuron yang semula berada dalam kondisi “0”, akan mengeluarkan signal “1”. Berdasarkan nilai output tersebut (=y), sebuah neuron dapat berada dalam dua status: “0” atau “1”. Neuron disebut dalam kondisi firing bila menghasilkan output bernilai “1”.
Sebuah neurall network dapat dianalisa dari dua sisi:
- bagaimana neuron-neuron tersebut dirangkaikan dalam suatu jaringan (arsitektur)
- bagaimana jaringan tersebut dilatih agar memberikan output sesuai dengan yang dikehendaki (algoritma pembelajaran). Algoritma pembelajaran ini menentukan cara bagaimana nilai penguatan yang optimal diperoleh secara otomatis.
Berawal dari diperkenalkannya model matematika neuron oleh McCulloch & Pitts, penelitian di bidang neural network berkembang cukup pesat, dan mencapai puncak keemasan pertama pada era tahun 60, dan puncak kedua pada pertengahan tahun 80-an. Penelitian dalam bidang ini, dapat dibagi dalam tiga kategori:
1. Riset untuk meneliti proses informasi yang terjadi pada otak dan jaringan saraf. Tema ini merupakan porsi penelitian para ahli medis dan neuroscientist.
2. Penelitian teoritis untuk mendalami konsep dasar proses informasi pada otak. Kategori ini memerlukan ketajaman analisa matematika untuk menggali dasar-dasar teori dari proses tersebut.
3. Penelitian yang bertujuan memanfaatkan teori-teori yang telah ada untuk aplikasi. Dalam hal ini, perlu sekali memperhatikan tingkat akurasi sistem, dan menekan biaya serendah mungkin (low cost solution).
Dewasa ini, neural network telah diaplikasikan di berbagai bidang. Hal ini dikarenakan neural network memiliki kelebihan-kelebihan sebagai berikut :
1. Dapat memecahkan problema non-linear yang umum dijumpai di aplikasi
2. Kemampuan memberikan jawaban terhadap pattern yang belum pernah dipelajari (generalization)
3. Dapat secara otomatis mempelajari data numerik yang diajarkan pada jaringan tersebut.

2.3.4.    Lapisan Neurall Network
Istilah "jaringan" pada Jaringan Syaraf Tiruan merujuk pada interkoneksi dari beberapa neuron yang diletakkan pada lapisan yang berbeda. Secara umum, lapisan pada Jaringan Syaraf Tiruan dibagi menjadi tiga bagian:
·         Lapis masukan (input layer) terdiri dari neuron yang menerima data masukan dari variabel X. Semua neuron pada lapis ini dapat terhubung ke neuron pada lapisan tersembunyi atau langsung ke lapisan luaran jika jaringan tidak menggunakan lapisan tersembunyi.
·         Lapisan tersembunyi (hidden layer) terdiri dari neuron yang menerima data dari lapisan masukan.
·         Lapisan luaran (output layer) terdiri dari neuron yang menerima data dari lapisan tersembunyi atau langsung dari lapisan masukan yang nilai luarannya melambangkan hasil kalkulasi dari X menjadi nilai Y.
Berdasarkan arsitekturnya, neural network dapat dikategorikan, antara lain, single-layer neural network, multilayer neural network, recurrent neural network dsb. Berbagai algoritma pembelajaran antara lain Hebb’s law, Delta rule, Backpropagation algorithm, Self Organizing Feature Map, dsb. 

2.3.5.    Fungsi Neurall Network
Fungsi dari Neural Network diantaranya adalah:
1.      Pengklasifikasian pola
2.      Memetakan pola yang didapat dari input ke dalam pola baru pada output
3.      Penyimpan pola yang akan dipanggil kembali
4.      Memetakan pola-pola yang sejenis
5.      Pengoptimasi permasalahan
6.      Prediksi

2.3.6.    Proses Kerja Jaringan Syaraf Pada Otak Manusia
Ide dasar Neural Network dimulai dari otak manusia, dimana otak memuat  sekitar 1011 neuron. Neuron ini berfungsi memproses setiap informasi yang masuk. Satu neuron memiliki 1 akson, dan minimal 1 dendrit. Setiap sel syaraf terhubung dengan syaraf lain, jumlahnya mencapai sekitar 104 sinapsis. Masing-masing sel itu saling berinteraksi satu sama lain yang menghasilkan kemampuan tertentu pada kerja otak manusia.
Gambar 2.3 Struktur Neuron pada otak manusia
Dari gambar di atas, bisa dilihat ada beberapa bagian dari otak manusia, yaitu:
1.      Dendrit (Dendrites) berfungsi untuk mengirimkan impuls yang diterima ke badan sel syaraf.
2.      Akson (Axon) berfungsi untuk mengirimkan impuls dari badan sel ke jaringan lain
3.      Sinapsis berfungsi sebagai unit fungsional di antara dua sel syaraf.
Proses yang terjadi pada otak manusia adalah:
Sebuah neuron menerima impuls dari neuron lain melalui dendrit dan mengirimkan sinyal yang dihasilkan oleh badan sel melalui akson. Akson dari sel syaraf ini bercabang-cabang dan berhubungan dengan dendrit dari sel syaraf lain dengan cara mengirimkan impuls melalui sinapsis. Sinapsis adalah unit fungsional antara 2 buah sel syaraf, misal A dan B, dimana yang satu adalah serabut akson dari neuron A dan satunya lagi adalah dendrit dari neuron B. Kekuatan sinapsis bisa menurun/meningkat tergantung seberapa besar tingkat propagasi (penyiaran) sinyal yang diterimanya. Impuls-impuls sinyal (informasi) akan diterima oleh neuron lain jika memenuhi batasan tertentu, yang sering disebut dengan nilai ambang (threshold).

2.3.7.    Struktur Neural Network
Dari struktur neuron pada otak manusia, dan proses kerja yang dijelaskan di atas, maka konsep dasar pembangunan neural network buatan (Artificial Neural Network) terbentuk. Ide mendasar dari Artificial Neural Network (ANN) adalah mengadopsi mekanisme berpikir sebuah sistem atau aplikasi yang menyerupai otak manusia, baik untuk pemrosesan berbagai sinyal elemen yang diterima, toleransi terhadap kesalahan/error, dan juga parallel processing.
 
Gambar 2.4 Struktur ANN
Karakteristik dari ANN dilihat dari pola hubungan antar neuron, metode penentuan bobot dari tiap koneksi, dan fungsi aktivasinya. Gambar di atas menjelaskan struktur ANN secara mendasar, yang dalam kenyataannya tidak hanya sederhana seperti itu.
1.      Input, berfungsi seperti dendrite
2.      Output, berfungsi seperti akson
3.      Fungsi aktivasi, berfungsi seperti sinapsis
Neural network dibangun dari banyak node/unit yang dihubungkan oleh link secara langsung. Link dari unit yang satu ke unit yang lainnya digunakan untuk melakukan propagasi aktivasi dari unit pertama ke unit selanjutnya. Setiap link memiliki bobot numerik. Bobot ini menentukan kekuatan serta penanda dari sebuah konektivitas.
Proses pada ANN dimulai dari input yang diterima oleh neuron beserta dengan nilai bobot dari tiap-tiap input yang ada. Setelah masuk ke dalam neuron, nilai input yang ada akan dijumlahkan oleh suatu fungsi perambatan (summing function), yang bisa dilihat seperti pada di gambar dengan lambang sigma (∑). Hasil penjumlahan akan diproses oleh fungsi aktivasi setiap neuron, disini akan dibandingkan hasil penjumlahan dengan threshold (nilai ambang) tertentu. Jika nilai melebihi threshold, maka aktivasi neuron akan dibatalkan, sebaliknya, jika masih dibawah nilai threshold, neuron akan diaktifkan. Setelah aktif, neuron akan mengirimkan nilai output melalui bobot-bobot outputnya ke semua neuron yang berhubungan dengannya. Proses ini akan terus berulang pada input-input selanjutnya.
ANN terdiri dari banyak neuron di dalamnya. Neuron-neuron ini akan dikelompokkan ke dalam beberapa layer. Neuron yang terdapat pada tiap layer dihubungkan dengan neuron pada layer lainnya. Hal ini tentunya tidak berlaku pada layer input dan output, tapi hanya layer yang berada di antaranya. Informasi yang diterima di layer input dilanjutkan ke layer-layer dalam ANN secara satu persatu hingga mencapai layer terakhir/layer output. Layer yang terletak di antara input dan output disebut sebagai hidden layer. Namun, tidak semua ANN memiliki hidden layer, ada juga yang hanya terdapat layer input dan output saja.





BAB III

PENUTUP
  
3.1. Kesimpulan
Soft Computing  merupakan inovasi baru dalam membangun sistem cerdas yaitu sistem yang memiliki keahlian seperti manusia pada domain tertentu, mampu beradaptasi dan belajar agar dapat bekerja lebih baik jika terjadi perubahan lingkungan.
Jaringan Syaraf Tiruan atau Neurall Network adalah sebuah alat pemodelan data statistik non-linier. Jaringan Syaraf Tiruan dapat digunakan untuk memodelkan hubungan yang kompleks antara input dan output untuk menemukan pola-pola pada data.
Neural Network sudah ditemukan pada tahun 1943 oleh Warren McCulloch dan Walter Pitts, mereka memperkenalkan perhitungan model neural network yang pertama kalinya. Mereka melakukan kombinasi beberapa processing unit sederhana bersama-sama yang mampu memberikan peningkatan secara keseluruhan pada kekuatan komputasi.

3.2. Saran
Demikian tulisan ini kami buat. Kami sadar akan banyaknya kekurangan dan banyaknya kesalahan yang kami buat sehingga makalah ini masih jauh dari kata sempurna karena kesempurnaan hanya milik tuhan YME. Kami juga membutuhkan kritik dan saran agar bisa menjadikan motivasi bagi kami agar kedepan bisa lebih baik lagi. Semoga makalah ini dapat bermanfaat bagi pembaca. Terimakasih juga kami ucapkan kepada segala pihak yang telah membantu hingga makalah ini sapat kami selesaikan.




DAFTAR PUSTAKA

ilmukomputer.com

Tidak ada komentar:

Posting Komentar

PENTINGNYA HAK CIPTA

Selain perlindungan hak cipta, ada juga UU terkait dengan paten. UU Paten di atur di nomor 14 tahun 2001 mengatur tentang definisi paten,...